Body Posture Detection Using Computer Vision
نویسندگان
چکیده
منابع مشابه
Human Computer Interaction Using Vision-Based Hand Gesture Recognition
With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...
متن کاملDrowsiness Detection for Drivers Using Computer Vision
Drowsiness detection system is regarded as an effective tool to reduce the number of road accidents. This project proposes a non-intrusive approach for detecting drowsiness in drivers, using Computer Vision. The algorithm is coded on OpenCV platform in Linux environment. The parameters considered to detect drowsiness are face and eye detection, blinking, eye closure and gaze. Input is captured ...
متن کاملHuman Computer Interaction Using Vision-Based Hand Gesture Recognition
With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...
متن کاملComputer Vision based Detection System
The Internet and wireless broadband infrastructure is adding an extra edge to the next generation video surveillance. Besides enhancing the ability to improve security, it will also help improving productivity, customer satisfaction and regulatory compliance of the business. A noninvasive video surveillance system has been developed successfully using the ARM 9 single board computer as the deve...
متن کاملComputer Vision Based Fire Detection
In this paper we use a combination of techniques to detect fire in video data. First, the algorithm locates regions of the video where there is movement. From these regions firecolored pixels are extracted using a perceptron. Lastly, we use dynamic texture analysis to confirm that these moving, fire-colored regions have the temporal and motion characteristics of fire.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of VLSI & Signal Processing
سال: 2020
ISSN: 2394-2584
DOI: 10.14445/23942584/ijvsp-v7i1p102